If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+32x=11
We move all terms to the left:
-16x^2+32x-(11)=0
a = -16; b = 32; c = -11;
Δ = b2-4ac
Δ = 322-4·(-16)·(-11)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{5}}{2*-16}=\frac{-32-8\sqrt{5}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{5}}{2*-16}=\frac{-32+8\sqrt{5}}{-32} $
| 5(2x3,+3=6x-5 | | 0.75x-0.625(1-x)=0.5(3x-0.5) | | 3x=80-3x | | Y(8-2y)=4 | | 3x/2+11=14 | | 3x-19=-2x+81 | | -56+9x=52 | | A(x)=50x-x^2=-(x^2-50x) | | A(x)=x(50-x) | | 2(-2-y)-3y=-9 | | 2x^2–x+9=9 | | 7b=9=33 | | 34=-2(z-6) | | 4x2-4=54 | | x-2/×+1-2-×/×-1=1 | | -8/5-7/3v=1/2 | | 10x-70=-20 | | 12x+8-8=180 | | 6x+20=140° | | -5.79+-3m=0.11 | | 5(m+2)+9m=6 | | 12x=3+3 | | -5/4=9/2v-3/8 | | 0.125=7/n | | 2x-3/1-×-1=4×+4/1-×+× | | 20t+5°=15t | | 39-4g=87 | | 8w-2=30 | | -6k+1=-2+7K1, | | b+23=37 | | a-42=28 | | 45+25+57+x=180 |